🏐 HashMap

吞佛童子2022年6月9日
  • Java
  • Collection
大约 13 分钟

🏐 HashMap

1. 类注释

  1. 概述
  • HashMap 实现了 Map 的所有方法
  • 允许有 1个 null 的 key & 多个 null 的 value
  • HashMapHashTable 类似,区别在于 HashMap 非线程安全 & 允许 null
  1. 复杂度
  • O(1): get put
  • O(数组长度 + KV 对的大小): Iteration
  1. 2个重要因素
  • initial capacity [初始容量]: 初始化时数组大小
    • capacity : 数组的大小
  • load factor [负载因子]: 超过会扩容为原数组的 2 倍
    • 通常来说,default load factor = 0.75 最合适,考虑时间 & 空间成本
      • 负载因子过高,可以降低空间成本,但是查找成本会提高
  1. 非线程安全

  2. 遵循 fail-fast 机制


2. 类图

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// ......
}

3. 属性

    private static final long serialVersionUID = 362498820763181265L;

    /*
     * Implementation notes.
     *
     *
     * 为避免每个 Node 下链表过长,造成 O(N) 复杂度,链表会转换成红黑树,复杂度降低为 O(log N)
     *
     * 由于树节点约为 2 倍常规链表结点的大小,因此只有当链表长度达到 TREEIFY_THRESHOLD = 8 时才会进行转换
     * 当数量[移除节点 | resize 过程]减少到一定程度后,红黑树会退化成链表
     * 理想状态下,在随机 hashCodes 作用下,若负载因子为 0.75,节点下的链表个数符合均值为 0.5 的泊松分布
     * (http://en.wikipedia.org/wiki/Poisson_distribution)
     * 以下为链表不同节点数量下的概率 -
     * 可以看出,链表长度超过 8 的概率已经特别小了,基本不可能出现
     * 
     * 0:    0.60653066
     * 1:    0.30326533
     * 2:    0.07581633
     * 3:    0.01263606
     * 4:    0.00157952
     * 5:    0.00015795
     * 6:    0.00001316
     * 7:    0.00000094
     * 8:    0.00000006
     * more: less than 1 in ten million
     */

    /**
     * 初始 capacity 必须 为 2 的幂
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // == 16

    /**
     * The maximum capacity 必须 为 2 的幂 && <= 1<< 30
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 若构造函数中未指定负载因子,则默认为 0.75f
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * 当链表节点个数至少为 TREEIFY_THRESHOLD 时,此时再添加节点,链表就会转换为树
     * TREEIFY_THRESHOLD 必须 > 2 && 至少应该 == 8 才能满足上面的公式
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * 链表节点个数 <= 6 时退化为链表,该值至少 == 6 才能满足上面的公式
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * 链表转换为树时,数组长度至少为64,否则会先进行数组的扩容操作
     * 为了避免在哈希表建立初期,多个键值对恰好被放入了同一个链表中而导致不必要的转化
     * 该值至少为 4 * TREEIFY_THRESHOLD
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * 添加扰动,使其同时具备高位 & 低位特征
     * 防止低几位出现想同的概率太大,尽可能的将数据实现均匀分布
     */
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    /**
     * 基于给定 capacity ,保证输出为 2 的幂
     * 首先将 一个数字的二进制,从第一个不为0的位开始,把后面的所有位都设置成1
     * 再 把Step 1得到的数值 +1,变成 2 的幂
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    /**
     * 数组长度始终为 2 的幂
     */
    transient Node<K,V>[] table;

    /**
     * 遍历时用到的 entrySet
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * KV 对的个数
     */
    transient int size;

    /**
     * 保证 iterator 时的 fast-fail
     */
    transient int modCount;

    /**
     * 阈值 =  (capacity * load factor)
     */
    int threshold;

    /**
     * 负载因子
     */
    final float loadFactor;

4. 内部类

    /**
     * 单向链表类  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

5. 构造函数

    /**
     * 无参构造函数 
     * load factor = 0.75
     * 该构造函数和其他的均不同,初始化时,未设置 初始容量,需要 resize() 扩容时再进行判断
     * resize() 时,会设置 capacity = 16, threshod = 12
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    /**
     * 指定 初始 capacity 构造函数,load factor = 0.75
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**
     * 指定 初始 capacity & load factor  构造函数
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0) // 初始容量判断
            throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
            
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
            
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) // loadFactor 判断
            throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
            
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity); // 根据 initialCapacity 确定数组大小,之后 resize() 时确定 扩容阈值
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // 负载因子为 默认值
        putMapEntries(m, false);
    }

    /**
     * Implements Map.putAll and Map constructor
     *
     * @param m the map
     * @param evict false when initially constructing this map, else
     * true (relayed to method afterNodeInsertion).
     */
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            if (table == null) { // 原有数组为空,根据插入 map 元素个数设置 当前 map 的容量阈值
                float ft = ((float)s / loadFactor) + 1.0F; // 根据原数组长度 & 负载因子 反推 容量阈值
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t); // 将 求得的 threshold 设置为 2 的幂
            } else if (s > threshold) {
                resize(); // 数组扩容
            }
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

6. 常用方法

1. get(Object key)

    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K,V> e = getNode(hash(key), key);
        return e == null ? defaultValue : e.value;
    }
    
    /**
     * 返回 期望值 | null
     */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /**
     * 根据给定 hash 判断是否存在 key 节点
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab = table; 
        Node<K,V> first; 
        Node<K,V> e; 
        int n; 
        K k;
        if (tab != null 
            && (n = tab.length) > 0 
            && (first = tab[(n - 1) & hash]) != null) {
            k = first.key;// 该 hash 对应数组下标的首节点的 key 值
            
            if (first.hash == hash && // 要找的就是这个 首节点,返回
                (k == key || (key != null && key.equals(k))))
                return first;
                
            e = first.next;
            if (e != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key); // 红黑树的查找
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null); // 链表的查找
            }
        }
        return null;
    }

2. put(K key, V value)

    /**
     * 添加节点,若该节点已存在,则覆盖原值
     *
     * @param key key with which the specified value is to be associated
     * @param value value to be associated with the specified key
     * @return old val | null
     */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent == true 则不覆盖原值; onlyIfAbsent == false 则覆盖原值
     * @param evict == false 则数组在创建模式中; evict == true 则数组不在创建中
     * @return 旧val | null
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
        Node<K,V>[] tab; 
        Node<K,V> p; 
        int n, i;
        
        // 1) 数组为空,则首先进行初始化操作
        tab = table;
        n = tab.length;
        if (tab == null || n == 0) {
            tab = resize();
            n = tab.length;
        }
        // 2) 当前 hash 所对应下的节点为空,则在此处创建新节点
        i = (n - 1) & hash; // 获取该 hash 对应数组的具体下标,如果存在某个值,那么一定在这个下标处
        p = tab[i]; // 定位到想要下标处的节点
        if (p == null)
            tab[i] = newNode(hash, key, value, null); // 为空,直接插入
        else {
            // 3) 当前 index 处已有节点
            Node<K,V> e; // 要插入元素对应的 map 中已有的节点
            K k;
            k = p.key;
            if (p.hash == hash &&
                ((k == key || (key != null && key.equals(k))))
                e = p; // ① 头结点即为要插入的节点,直接覆盖原值
            else if (p instanceof TreeNode)
                // ② 红黑树的插入节点操作
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                // ③ 链表的插入节点操作 - 同时判断是否需要转换为红黑树
                for (int binCount = 0; ; ++binCount) {
                    e = p.next;
                    if (e == null) {
                        p.next = newNode(hash, key, value, null); // 说明对应下标处的链表中也不存在,是个新节点
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    k = e.key;
                    if (e.hash == hash &&
                        (k == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value; // 用新值替换旧值
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

    /**
     * 数组的初始化 | 扩容
     *
     * @return the table
     */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        
        // 容量 & 阈值的更新
        if (oldCap > 0) { // oldTab != null 说明 该方法已经被执行过,例如 指定map的构造函数 | put() 等操作
        
            if (oldCap >= MAXIMUM_CAPACITY) { // 原有容量已经达到峰值,无法扩容为原来的 2 倍,直接 return
                threshold = Integer.MAX_VALUE;
                return oldTab;
            } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY) // 可以扩容为原来的 2 倍 && 原来容量至少为 16
                newThr = oldThr << 1; // newCap & newThr 扩容为原来的 2 倍
                
        } else if (oldThr > 0) // oldTab == null && 在构造时指定了非零的 threshold
            newCap = oldThr;
            
        else { // oldTab == null && (无参构造函数 || 有参构造函数 且 threshod == 0)
            newCap = DEFAULT_INITIAL_CAPACITY; // 数组大小 = 16
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); // 扩容阈值 = 12
            
        }
        // 1) 可以扩容为原来的 2 倍 && 原来容量至少为 16 --> 不满足
        // 2) oldTab == null && 在构造时指定了非零的 threshold
        // 此时,新扩容阈值 == newCap * loadFactor
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        
        // 原数组元素的迁移
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; // 存放新节点的数组
        table = newTab;
        if (oldTab != null) {
            // 遍历 原数组节点
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e = oldTab[j];
                if (e != null) {
                    // 原数组该 index 处有节点,需要进行迁移
                    oldTab[j] = null;
                    // 只有一个节点
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode) // 红黑树的迁移
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // 链表的迁移
                        Node<K,V> loHead = null, loTail = null; // head 为头结点,tail 为当前节点,由于尾插,所以始终为尾节点
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            // 链表迁移中,没有重新计算每个节点下标 e.hash & (newCap - 1)
                            // 而是通过 e.hash & oldCap 是否 == 0 区分成两条分别在新链表的不同下标处的链表
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

    /**
     * 链表转换为红黑树
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; 
        Node<K,V> e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize(); // 数组长度小于 MIN_TREEIFY_CAPACITY [64] 时会先进行扩容而非转换为红黑树
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p; // 保存双向链表结构
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

    // For treeifyBin
    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }
        
    void afterNodeAccess(Node<K,V> p) { } // 为 LinkedHashMap 重写该方法做准备,下同
    void afterNodeInsertion(boolean evict) { }

3. remove(Object key)

    /**
     * Removes the mapping for the specified key from this map if present.
     *
     * @param  key key whose mapping is to be removed from the map
     * @return  old val | null
     */
    public V remove(Object key) {
        Node<K,V> e = removeNode(hash(key), key, null, false, true));
        return (e == null ? null : e.value;
    }

    /**
     * Implements Map.remove and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) {
        Node<K,V>[] tab = table; 
        int n = tab.length;
        int index = (n - 1) & hash;
        Node<K,V> p = tab[index]; // 数组当前 index 下首节点
        
        if (tab != null && n > 0 && p != null) { // 要删除的下标位置有元素,因此可能有要删除的节点
            Node<K,V> node = null; // key 对应的 节点
            Node<K,V> e; // 链表遍历时的当前节点
            K k; 
            V v;
            // 找到要删除的节点 node
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        k = e.key;
                        if (e.hash == hash &&
                            (k == key || (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e; // 暂存上一个节点
                    } while ((e = e.next) != null);
                }
            }
            // 移除 node 节点
            v = node.value;
            if (node != null && (!matchValue || v == value || (value != null && value.equals(v)))) {
                if (node instanceof TreeNode) // 删除树节点
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next; // 删除的是链表首节点
                else
                    p.next = node.next; // 删除链表非首节点
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    void afterNodeRemoval(Node<K,V> p) { }

4. 遍历用

1) entrySet()

    /**
     * 返回 k-v 对的集合
     * 对该集合进行修改会影响对 map 自身的修改,反之亦然
     * 提供 通过 set.remove() iterator.remove() 方法对元素进行删除
     * Iterator 不提供 add() 方法,HashMap 也没有对其进行扩展,所以无法在遍历时进行增加操作
     * 不支持 通过 add() 对元素进行添加
     *
     * @return a set view of the mappings contained in this map
     */
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es = entrySet;
        return es == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            tab = table;
            if (size > 0 && tab != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }
    
    interface Entry<K,V> {
        K getKey();
        V getValue();
        boolean equals(Object o);
        int hashCode();
    }

2) keySet()

    /**
     * 返回 key 集合
     * 这个集合基于 map,因此对 map 的修改会影响到 set,反之亦然
     * set 集合提供对 map 的 删除、清空等操作,但没有 add() 操作
     *
     * @return a set view of the keys contained in this map
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet(); // 第一次获取时,若该类还没有进行初始化,先进行初始化操作
            keySet = ks;
        }
        return ks;
    }

    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            tab = table;
            if (size > 0 && tab != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

3) values()

    /**
     * 返回 value 集合
     * 对 values 类所做的操作会反馈到 map 上,反之亦然
     * 提供 通过 iterator() 进行元素删除操作
     * 不支持 add() 操作
     *
     * @return a view of the values contained in this map
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
                tab = table;
            if (size > 0 && tab != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

7. HashMap VS HashTable

HashMapHashTable
线程安全🥶😋
初始容量1611
扩容2n2n + 1
key == null😋🥶
底层数据结构数组 + 链表 + 红黑树(JDK 1.8)数组 + 链表
上次编辑于: 2022/10/10 下午8:43:48
贡献者: liuxianzhishou